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Paramagnetic solutions of the ionic Hubbard model at half-filling in dimensions D�2 indicate that the band
and the Mott insulator phases are separated by a metallic phase. We present zero-temperature dynamical
mean-field theory solutions, which include antiferromagnetic long-range order and show that the one-particle
spectral functions always possess an energy gap, and therefore the system is insulating for all interaction
strengths. The staggered charge-density modulation coexists with antiferromagnetic long-range order of Néel
type.
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A bipartite lattice system of noninteracting electrons with
one particle per site is a perfect gapless metal. Applying an
external alternating potential with a periodicity of twice the
lattice constant a doubles the unit cell, which thereby re-
duces the Brillouin zone �BZ� and opens a gap at the BZ
boundary. Such a system is a band insulator with a charge-
density modulation with wavelength 2a; this system is also
referred to as an ionic insulator.1 On the other hand, switch-
ing on a local repulsive interaction between the electrons
with opposite spins leads either to a paramagnetic Mott-
Hubbard insulator with a correlation-induced energy gap or
to the spontaneous development of antiferromagnetic �AF�
long-range order. In the latter case it is the presence of AF
order which doubles the unit cell and opens a gap at the BZ
boundary for weak interactions and thereby creates a Slater
insulator. In the strong interaction limit the electrons are
localized with antiferromagnetically aligned spins forming a
Mott-Heisenberg insulator. Experimental and theoretical in-
vestigations of metal-insulator transitions and transitions be-
tween different insulators continue as a challenge for con-
densed matter physics.

The ionic Hubbard model2,3 incorporates both interactions
and an external alternating potential and is therefore well
suited to study transitions between metallic or different insu-
lating phases. This model was originally used to study the
neutral-ionic transition in organic charge transfer salts3 or
ferroelectric transitions in perovskite materials.4 But the un-
derstanding of possible phase transitions in the ionic Hub-
bard model may prove to be important for other strongly
correlated electron systems as well such as, for example,
FeSi.5 The physics of the ionic Hubbard model may even
find a realization in optical lattices if two laser beams of
commensurate wavelengths are superposed with properly
tuned amplitudes.6

Extensive literature records exact, approximate, as well as
numerical results for the ionic Hubbard model and its exten-
sions in one dimension.7–10 It is agreed that at half-filling and
in the interaction dominated regime, the system is a para-
magnetic Mott insulator whereas in the alternating potential
dominated regime the system is an ionic band insulator. By
now there is an emergent consensus that these two types of

insulators are separated by yet another insulating phase with
a nonzero bond-order parameter, which is the expectation
value for a staggered component of the kinetic energy.

More recently the ionic Hubbard model was also investi-
gated in higher dimensions within single-site or cluster dy-
namical mean-field theory �DMFT� �Refs. 11–14� or by de-
terminant quantum Monte Carlo simulations.15 Using DMFT
with iterated perturbation theory as the tool for solving the
DMFT equations, Garg et al.12 determined the ground-state
phase diagram of the ionic Hubbard model at half-filling for
a semicircular density of states. With the restriction to para-
magnetic solutions an intermediate metallic phase was found
separating the Mott and the band insulators. Within the same
computational framework Craco et al.13 identified a coexist-
ing phase between two insulators as well as discontinuous
metal-insulator transitions. The discontinuous transitions
were confirmed in the two-dimensional �2D� system by Kan-
charla and Dagotto,14 who used cluster DMFT combined
with exact diagonalization and interpreted their data in favor
of an intermediate bond-ordered phase.

While the DMFT work was restricted to paramagnetic
solutions, finite temperature quantum Monte Carlo in 2D
simulations also probed AF correlations.15 The presence of
the intermediate metallic phase between the band and the
Mott insulators was confirmed. However, since in the 2D
system at finite temperature long-range antiferromagnetism
is prohibited,16 the question of how the possible presence of
the antiferromagnetic long-range order in higher dimensions
or in 2D at zero temperature changes the phase diagram has
remained open.

Here we apply DMFT to the ionic Hubbard model at zero
temperature allowing for spontaneous AF long-range order.
We find that the ground state is always insulating, with a gap
in the one-particle spectral function. There is a direct transi-
tion between the band insulator and the AF Mott insulator.
Beyond critical interaction strength the charge- and the spin-
density modulations coexist. In this region the insulator has
AF character.

The ionic Hubbard model on a bipartite lattice is defined
by the following Hamiltonian:
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H = − t �
�ij��

ai�
† aj� + U�

i

ni↑ni↓ + �
i�

�ini�, �1�

where �i= �� /2 for i�A and B sublattices, respectively.
The first term describes the kinetic energy of the electrons
with spin �= �1 /2 for the hopping between nearest-
neighbor lattice sites i and j with amplitude t, the Hubbard
interaction leads to an energy increase U�0 for the double
occupancy of a site, and the last term contains a staggered
potential with an energy difference ��0 between the A and
B sublattices. The operators ai� and ai�

† obey standard fermi-
onic anticommutation relations and ni�=ai�

† ai�.
Hamiltonian �1� is solved within DMFT at half-filling,

i.e., for the chemical potential �=U /2, by a mapping to two
nonequivalent impurity problems with the ionic energies
�� /2.17–20 The impurity sites are coupled to two particle
baths. Explicitly, we solve separately the two different
single-impurity Anderson models,

HSIAM
� = �	� − ��n�� + �

k

Vk���a��
† ck�� + h.c.� + Un�↑n�↓

+ �
k

	k��ck��
† ck��, �2�

where the hybridization matrix elements Vk�� and the kinetic
energies of the bath electrons 	k�� are obtained self-
consistently by additional DMFT equations.20 Here we ex-
plicitly keep the spin and the site ��=A ,B� dependences in
order to allow selectively for spin and charge orders. The
one-particle impurity energy is 	�= �� /2 for �=A or B,
respectively. The single-impurity Anderson Hamiltonians are
solved at zero temperature by the numerical renormalization
group �NRG� method.21 This method allows to obtain the
spectral functions at and near the Fermi energy with high
precision and can therefore accurately distinguish between
metallic and insulating phases.22

The local �impurity� Green’s functions obtained from Eq.
�2� are expressed via the hybridization function 
����� and
the self-energies ������ as

G����� =
1

� − �	� − �� − 
����� − ������
. �3�

The hybridization functions describe the resonant broadening
of the impurity energy levels due to the coupling to the par-
ticle baths and are given by


����� = �
k

�Vk���2

� − 	k��

. �4�

The self-energies capture the interaction-induced correlation
effects on the impurity sites.

Within DMFT the hybridization functions are subject to
self-consistent conditions, which involve the density of states
�DOS� for a given lattice structure.18–20 In the following we
adopt the semicircular DOS corresponding to the Bethe
lattice.20,23,24 The hybridization functions are then simply re-
lated to local Green’s function �3� through


����� =
W2

16
G�̄�̄��� , �5�

where �̄=B ,A if �=A ,B and �̄=−�, respectively. W=1 is
the bandwidth, which sets the energy unit. We emphasize
that the use of the semicircular DOS has merely technical
reasons because this choice simplifies the DMFT equations.
The obtained results remain qualitatively similar for any
particle-hole symmetric DOS, which represents a bipartite
lattice in dimensions D�2.23,24

From the self-consistent DMFT solution of the ionic
Hubbard model we determine �i� the local one-particle spec-
tral function A�����=−Im G����� /, �ii� the AF order
parameter �staggered magnetization� mAF= �nA↑−nA↓�
=−�nB↑−nB↓�, and �iii� the charge-density wave amplitude
�ionicity� mCDW= �nA↑+nA↓−nB↑−nB↓�, where �¯� denotes
ground-state expectation values. A metal is distinguished
from an insulator by a finite spectral function at the Fermi
level; i.e., A�0�=���A���0��0.

Without allowing for long-range AF order in the self-
consistent DMFT solution the results of iterated perturbation
theory suggested that the band and the Mott insulators are
separated by a metallic phase.12,13 Here, we confirm this con-
clusion by using NRG for solving the DMFT equations. In
Fig. 1 we show spectral functions in the paramagnetic re-
gime at fixed �=0.5 starting from a band insulator at small
interactions �cf. top panel with U=0.5�. By increasing U we
find a continuous transition to a metallic solution with finite
spectral weight at the Fermi energy �for U=1 and 1.5 in Figs.
1�b� and 1�c��. This metallic phase coexists with long-range
charge order, i.e., mCDW�0. Larger interaction strengths ho-
mogenize the system, and the charge-density wave amplitude
continuously decreases �cf. the results for U=1.5 in Fig. 1�c�
and the inset in Fig. 2�. A further increase in U leads to a

FIG. 1. �Color online� Spectral functions normalized to unity for
the ionic Hubbard model at �=0.5 and different interactions U in
the paramagnetic limit. Solid and dashed lines correspond to the A
and B sublattices. From top to bottom: �A� band insulator; �B� and
�C� correlated metal; and �D� and �E� correlated Mott insulators.
Note the different scales on the axis in particular horizontal ones.
Energy � and parameters � and U are in energy units set by the
bandwidth W=1.
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Mott-Hubbard-type metal-insulator transition with hysteretic
behavior.22,25 In the examples shown in Fig. 1 for U=2 and
2.5, we find Mott insulators with correlation-induced spectral
gaps. In the Mott insulator the charge-density wave is very
small but remains finite.

The two transitions are separated in the phase diagram
and imply the existence of two critical interaction
strengths.12,13 The transition from the metal to the Mott in-
sulator resembles the one, which is found within DMFT ap-
plied to the paramagnetic Hubbard model in the absence of a
staggered potential.22,25 At zero temperature this transition is
continuous, though hysteretic behavior in the iterative solu-
tion is encountered; it occurs at Uc	1.45 for a semicircular
DOS.

We note that although mCDW becomes vanishingly small
for large U �see the inset in Fig. 2� it is expected to remain
finite for all interaction strengths as long as ��0. This ex-
pectation relies on the general argument that the symmetry of
the ground state cannot be higher than the symmetry of the
Hamiltonian itself.

It is understood, however, that the paramagnetic solution
of the Hubbard model at half-filling is not the generic case.
Antiferromagnetism is likely to occur unless it is prohibited,
e.g., by strong frustration effects. In the next step we there-
fore discuss the ionic Hubbard model at half-filling on a
bipartite lattice allowing for long-range antiferromagnetism.

Both, staggered charge order �induced by the alternating
potential �� and spontaneous staggered AF order, may give
rise to a gapped spectrum and an insulating behavior of the
lattice system at half-filling. If both staggered orders develop
simultaneously, the above-mentioned metallic phase in be-
tween the ionic band and the Mott insulator may be insulat-
ing due to an AF-induced energy gap. Indeed, as the ex-
amples in Fig. 3 illustrate, the spectral functions are gapped

around the Fermi energy in the entire U range. At weak U the
system possesses charge order only; staggered magnetization
is zero �cf. Fig. 3�a��. By increasing U mCDW is reduced and
AF correlations develop. The local interaction U reduces the
amount of double occupancy—needed to maintain a finite
mCDW at half-filling. On the other hand, virtual hopping pro-
cesses induce an effective exchange interaction, which favors
antiferromagnetism. Beyond a critical U��� the system ac-
quires Néel order �cf. Figs. 3�b�–3�e�� accompanied by a
strong reduction in the CDW amplitude.

In Fig. 4 we present how the order parameters mCDW and

FIG. 2. �Color online� Spectral functions at the Fermi energy
versus U for the ionic Hubbard model at �=0.5 in the paramagnetic
limit. Solid black and red �black and dark gray� data points are
obtained from DMFT iterations which start from an initial metallic
input whereas open blue and green �gray and light gray� points are
obtained from an insulating input. The band insulator to metal tran-
sition is continuous, but the metal to Mott insulator transition is
hysteretic. Inset: charge-density wave amplitude mCDW vs U. Pa-
rameters � and U are in energy units set by the bandwidth W=1.

FIG. 3. �Color online� Spectral functions normalized to unity of
the ionic Hubbard model for �=0.5 and different interactions U
allowing for AF order. Solid and dashed lines correspond to differ-
ent sublattices; the color �grayscale� code distinguishes the spins
�= �1 /2, as indicated in the inset. �A� Paramagnetic band insula-
tor with mCDW�0 and mAF=0. �B�–�E� Antiferromagnetic ionic
insulator with mCDW�0 and mAF�0. Note different scales on ver-
tical axis. In all cases the spectra are gapped. Energy � and param-
eters � and U are in energy units set by the bandwidth W=1.

FIG. 4. �Color online� U dependence of spin- and charge-
density wave order parameters, solid and dashed lines, respectively,
for different ionic potentials � marked by different symbols as in-
dicated in the inset. Parameters � and U are in energy units set by
the bandwidth W=1.
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mAF vary with the interaction U for different ionic potentials
�. As discussed above, due to the suppression of double
occupancies by the on-site repulsion, the charge-density
wave order parameter is reduced but mCDW�0 for all U as
inferred from symmetry arguments. Whereas at �=0 Néel
order appears at infinitesimally small U, at finite � the inter-
action has to exceed a finite critical value Uc��� for the onset
of antiferromagnetism. This quantum phase transition at
U=Uc��� is continuous in contrast to the paramagnetic-
antiferromagnetic transition for models with frustration.26 At
very large U the AF order parameter saturates at its maxi-
mum value.

In summary, our numerical solution of the DMFT equa-
tions for the ionic Hubbard model provides evidence for the
existence of critical interaction strength for the transition
from a weakly correlated band insulator to a Mott insulator
with coexisting charge and staggered spin orders. A gap in
the one-particle spectrum persists in all parameter regimes

and thus implies the absence of an intervening metallic
phase. We emphasize that our results do not contradict the
findings in Refs. 12–15 because in those works the AF long-
range order was either excluded by the choice of the method
or by the low dimensionality of the system and finite tem-
peratures. Transitions between a correlated metal and a band
insulator are also found in other models, such as the Hubbard
model with binary alloy disorder27,28 or the bilayer Hubbard
model with interlayer hopping.29 As we have demonstrated
here, the occurrence of spontaneous staggered long-range or-
der can significantly change the nature or even the existence
of a transition to a metallic phase.
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