
Crossover from hc Õe to hc Õ2e current oscillations in rings of s-wave superconductors

F. Loder, A. P. Kampf, and T. Kopp
Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany

�Received 22 August 2008; published 25 November 2008�

We analyze the crossover from an hc /e periodicity of the persistent current in flux-threaded clean metallic
rings toward an hc /2e-flux periodicity of the supercurrent upon entering the superconducting state. On the
basis of a model calculation for a one-dimensional ring we identify the underlying mechanism, which balances
the hc /e versus the hc /2e periodic components of the current density. When the ring circumference exceeds
the coherence length of the superconductor, the flux dependence is strictly hc /2e periodic. Further, we develop
a multichannel model which reduces the Bogoliubov–de Gennes equations to a one-dimensional differential
equation for the radial component of the wave function. The discretization of this differential equation intro-
duces transverse channels whose number scales with the thickness of the ring. The periodicity crossover is
analyzed close the critical temperature.
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I. INTRODUCTION

Charged particles, which encircle a magnetic flux-
threaded region, acquire a geometric phase. This Aharonov-
Bohm �AB� phase leads to quantum interference phenomena
along multiply connected paths.1 A particular manifestation
of the AB effect is the persistent current in mesoscopic metal
rings,2,3 which is modulated periodically by the magnetic
flux piercing the interior of the ring with the period of a flux
quantum �0=hc /e for clean rings.

Likewise, in superconducting rings the order parameter
responds periodically to magnetic flux as implied by the re-
quirement of a single-valued superconducting wave function
in the presence of a supercurrent.4–6 Measurements of mag-
netic flux trapped in small cylinders proved that the flux in
superconductors is quantized in units of �0 /2.7,8 The hc /2e
superconducting flux quantum was corroborated by measure-
ments of the hc /2e periodicity of the critical temperature of
superconducting rings by Little and Parks9,10 and by the
hc /2e flux quantization of Abrikosov vortices.11

The oscillations of the persistent current or the supercur-
rent with respect to the magnetic flux imply the correspond-
ing periodicity for all thermodynamic functions.12 Two
classes of condensate states have been identified which are
not related by a gauge transformation. In the thermodynamic
limit, they are degenerate for integer and half-integer flux
values, which results in the observed �0 /2 periodicity. This
degeneracy is however lifted for discrete systems,13 which
was implicitly understood already in the early works of By-
ers and Yang5 and by Brenig.14 The lifting of the degeneracy
can be made explicit through the evaluation of the supercur-
rent in sufficiently small rings.15 Recently, nodal supercon-
ductors have been in the focus of research15–18 as they allow
for striking differences in the excitation spectrum for flux
sectors centered around integer and half-integer �0 values,
respectively.

For rings of s-wave superconductors, it is expected that
the hc /e periodicity is restored if the ring diameter is smaller
than the coherence length.15,19–21 While the �0 and the �0 /2
periods are well understood in metallic and superconducting
rings, it has remained unaddressed how the periodicity

evolves for such a small ring when the normal metal turns
superconducting. Here we analyze the periodicity crossover
in a one-dimensional �1D� model for a flux-threaded ring at
zero temperature, which allows for a transparent analytical
treatment on the basis of the Gor’kov equations in an exter-
nal magnetic field �Sec. II�.

The gap equation for the current carrying superconducting
state is solved for finite-size rings to evaluate the field de-
pendence of the discrete energy spectrum and the supercur-
rent. We identify two components of the current with hc /e
and hc /2e periodicities, respectively, whose magnitudes shift
with the opening and increase in the energy gap in the su-
perconducting state. When the coherence length of the super-
conducting ring is of the order of the ring size, only the
hc /2e-periodic component remains. A similar analysis for
the temperature-driven crossover in clean and dirty 1D rings
was recently published by Wei and Goldbart.20

It is well known that a long-range-ordered superconduct-
ing state does not exist in 1D. However, whereas thermal
phase slips suppress a transition into the superconducting
state at finite temperature, quantum phase slips at zero tem-
perature are rare events. Even if phase coherence is broken at
certain instants in time and space, the supercurrent does not
decay in the ring. We therefore investigate only the zero-
temperature transition for the 1D ring.

Subsequently �Sec. III� we extend our analysis to rings of
finite thickness �“annuli”�, which represent, from a formal
point of view, multichannel systems. For the annuli we
present the periodicity crossover upon cooling through the
superconducting transition temperature. For annular systems
that are confined to a two-dimensional �2D� plane, we intro-
duce a semianalytical approach in which the numerical work
is reduced to the solution of a one-dimensional differential
equation for the radial component of the wave function. Its
discretization allows us to introduce a fixed number of
�transverse� channels whose number parametrizes the thick-
ness of the annulus.

II. 1D RING

We start from the tight-binding form of the kinetic energy
for a 1D ring with N sites as given by
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H0 = − t �
�ij�,s

e�ijcjs
† cis, �1�

where the sum extends over all nearest-neighbor sites i and j,
s= ↑ ,↓ denotes the spin, and t is the hopping matrix element.
The vector potential A of an external magnetic field enters
through the Peierls phase factor, �ij = �e /�c��i

jA ·dr
=2�� /N, where �=� /�0 and � is the magnetic flux
through the ring. After Fourier transformation H0 becomes

H0 = �
ks

�k−�cks
† cks, �2�

with the single-particle energy for a state with angular mo-
mentum �k,

�k−� = − 2t cos� k − �

R
� . �3�

R=N /2� denotes the dimensionless radius of the ring and
k=−N /2, . . . ,N /2−1. If N is a multiple of 4, a k value exists
for which �k=0,22 with two states exactly at the Fermi energy
EF=0 for �=0. To ensure a unique ground state, we choose
�= t /N which is placed in between two single-particle ener-
gies �k. This is achieved for even N, which are not multiples
of 4. All calculations were performed for this generic choice
of N and �.

The superconducting state in this strictly 1D ring model is
controlled by a BCS-type Hamiltonian of the form

H = H0 + �
k,q

	�k
��q�c−k+q↓ck↑ + �k�q�ck↑

† c−k+q↓
† 
 , �4�

where �k�q� is the superconducting order parameter for the
formation of Cooper pairs with finite angular momentum �q
and q�Z. The order parameter is obtained from the anoma-
lous imaginary time Green’s function F�k ,k� ,	−	��
= �T	ck↓�	�c−k�↑�	��� �Ref. 23� by

�k�q� = kBT�
k�

�
n

Vkk�F�k�,k� − q,
n� , �5�

where 
n= �2n−1��kBT is the fermionic Matsubara fre-
quency for temperature T, Vkk� is the pairing interaction, and
T	 is the time-ordering operator.

�k�q� has to be determined self-consistently in the super-
conducting state. This is achieved by solving the equations of
motion for the anomalous Green’s function and the single-
particle propagator G�k ,	−	��= �T	cks�	�cks

† �	���, which is
diagonal with respect to momentum and spin. This leads to
the self-consistent set of Gor’kov equations,

G−1�k,
n� = G0
−1�k,
n� + �

q

�k�q�G0�− k + q,− 
n��k−q
� �q� ,

�6�

F�k,k − q,
n� = G0�k,
n��k�q�G�− k + q,− 
n� , �7�

where G0�k ,
n�= 	i�
n−�k−�
−1 is the Green’s function in
the normal state.

We assume that the unique ground state of the supercon-
ducting condensate is characterized by a single integer quan-
tum number q���. For rings larger than the coherence length,

the q number of the ground state advances to the next integer
whenever � crosses the flux values �2n−1� /4, with n�Z,
i.e., q���=floor�2�+1 /2�, where floor�x� is the largest inte-
ger smaller than x. Discreteness of the energy levels shifts
the increment in q slightly according to the energy difference
of even-q and odd-q states. Disregarding this small shift in
the first approach �see comment at the end of this section�,
we take �k�q� of the form

�k�x� = ��x − q�����k. �8�

For s-wave pairing, which is the only Cooper-pair state pos-
sible in a strictly 1D system, �k�� is constant. With this
ansatz, we determine the Green’s function from Eq. �6� as

G�k,
n� =
− i�
n − �−k−�+q

	i�
n − E+�k,��
	i�
n − E−�k,��

, �9�

where the two energy branches E��k ,q� are given by

E��k,�� =
�k−� − �−k−�+q

2
� ��2 + �2�k,�� , �10�

with ��k ,��= ��k−�+�−k+q−�� /2. The energies E��k ,�� are
plotted in Fig. 1 as a function of k. The upper �E+� and the
lower branches �E−� are separated by an indirect energy gap,
which closes at a critical value �c. For finite flux the disper-
sion is asymmetric with respect to an inversion in the angular
momentum k→−k �see Fig. 1�, and this asymmetry induces
a finite supercurrent. In the “small-gap” regime ��c, both
E+�k ,�� and E−�k ,�� can be positive or negative, whereas in
the “large-gap” regime ���c, E+�k ,���0 and E−�k ,��
0 for all k and � 	see Fig. 2�a�
. Close to EF, E��k ,��
simplifies to

E���k,��  �
t

R
�2� − q� � ��2 + l�t/R�2, �11�

where k�0, l=1 for even q, and l=0 for odd q. The maxi-
mum direct energy gap in the even-q sectors is therefore
�0=��2+ �t /R�2, whereas in the odd-q sectors it is �1/2=�.
Equation �11� shows that the shift of the eigenenergies scales
with the ring size as 1 /R in the small-gap regime.

-9 -6 0

k

6 9

0

-2

E

2

-1

1

-3 3

E-

E+

FIG. 1. �Color online� Energy dispersion of a ring with an order
parameter �=0.22t for �=0 �dashed line� and �=�c0.24t �solid
line�, where the indirect energy gap closes. The filled �empty�
circles represent occupied �unoccupied� k states for a ring with N
=18. The asymmetry for �k scales with 1 /R.
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By inserting G�k ,
n� into the Gor’kov equation �7�, one
finds for the anomalous Green’s function,

F�k,k − q,
n� =
����

	i�
n − E+�k,��
	i�
n − E−�k,��

.

�12�

For a momentum-independent pairing interaction Vkk��V
we obtain the self-consistency equation for ���� from Eq.
�5� by summation over 
n,

1

N
�

k

f�E−�k,��� − f�E+�k,���
2�����2 + �2�k,��

=
1

V
, �13�

where f�E� denotes the Fermi distribution function. Instead
of lowering the temperature we explore below the transition
into the superconducting state at zero temperature by increas-
ing the pairing interaction strength V.

The flux � affects the solution of the gap equation 	Eq.
�13�
 for � in two ways. For small-size rings the magnitude
of � is mainly controlled by the energy of the level closest to
EF. If the quantity ��=mink���k ,��−EF��0, a solution of
Eq. �13� exists only above a threshold value of the pairing
interaction. In the even-q sectors, this is the case for all val-
ues of �, whereas in all odd-q sectors a flux value � exists,
for which ��=0 and Eq. �13� has a solution for all V�0 �cf.
Fig. 3�. This is a consequence of the discreteness of the en-

ergy levels. In the strong-coupling regime V� t, � is modu-
lated only slightly by the flux. For weak coupling V t, a
solution �1/2�c is possible in the small-gap regime, where
�1/2 denotes the order parameter at half-integer flux values.
In this case the energy gap closes at a critical flux �c in the
odd-q sectors and E+�k ,�� turns negative for the level clos-
est to EF �see Fig. 2�. Thus the dominant term in the sum of
Eq. �13� switches sign and the solution for � vanishes dis-
continuously. This is equivalent to a breaking of the Cooper
pair closest to EF, which provides the main contribution to
the condensation energy.24,25 These features for the solution
of the self-consistency equation are special for strictly 1D
rings. In these rings superconductivity is destroyed for ve-
locities of circulating Cooper pairs exceeding the Landau
critical velocity, which is approached at �=�c.

26

With the discrete lattice gradient �i f�i�= 1
2 	f�i+1�− f�i

−1�
, the current is obtained from

J��� =
− te

�
��i − � j�G�i − j�ei�ij�i=j =

e

h
�

k

��k

�k
n�k� ,

�14�

where n�k�=kBT�nG�k ,
n� is the momentum distribution
function. The result is shown in Fig. 4. For V=�=0 one
recovers the hc /e-periodic sawtooth pattern for the normal
persistent current as discussed in Ref. 22. With increasing �,
new linear sections appear continuously. These are the sec-
tions where the order parameter is finite in the small-gap
regime.19 The occupied state closest to EF contributes domi-
nantly to the current because all other contributions tend to
almost cancel in pairs. The discontinuities of the current oc-
cur where the � derivative of the energy of the highest oc-
cupied state switches sign �see Fig. 2�. These linear sections
increase with increasing �; once they extend to a range of
hc /2e upon reaching the large-gap regime, the current be-
comes strictly hc /2e periodic.

We obtain further insight into the mechanisms, which de-
termine the current periodicity, by analyzing �c. According
to Eq. �11�, close to EF, the maximum energy shift is t / �2R�
and the condition for a direct energy gap 	or E+�k ,���0 for
all k and �
 and an hc /2e-periodic current pattern is there-

-

-

FIG. 2. �Color online� Eigenenergies E��k ,�� 	Eq. �10�
 as a
function of flux � for N=26 and a self-consistently calculated order
parameter �; lines below E=0: E−�k ,�� and lines above E=0:
E+�k ,��. Upper panel: large-gap regime �V=1.9t and �1/20.30t�.
Lower panel: small-gap regime �V=1.1t and �1/20.08t�. Super-
conductivity occurs only in the odd-q sectors for V=1.1t �see Fig.
3�. The bold line marks the highest occupied state for all �. For the
definition of �1/2 see text after Eq. �11�.

FIG. 3. �Color online� Solution of the self-consistency equation
	Eq. �13�
 for different values of the pairing energy V at T=0. From
top to bottom: V=1.9t ,1.6t ,1.35t ,1.1t.
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fore ���c= t / �2R�. The corresponding critical ring radius is
Rc= t / �2��.

It is instructive to compare Rc with the BCS coherence
length �0=�vF / ����, where vF is the Fermi velocity and �
is the BCS order parameter at T=0. On the lattice we iden-
tify vF=�kF /m, with kF= �� /2a and m=�2 / �2a2t�; a is the
lattice constant. Setting the length unit a=1 we obtain �0

= t /� and thus 2Rc=�0. This signifies that the current re-
sponse of a superconducting ring smaller than the coherence
length is generally hc /e periodic.15 In these rings the
Cooper-pair wave function is delocalized around the ring.

A second fundamental effect, which manifestly breaks the
hc /2e periodicity, is the offset of the transition from even to
odd center of mass angular momenta q with respect to evenly
spaced flux values �2n−1�hc /4e. This small offset was al-
ready observed in our previous numerical evaluations for
d-wave loops.15 Vakaryuk21 traced this shift to the depen-
dence of the internal energy of Cooper pairs in the center of
mass state. For a BCS-model superconductor, this effect is
fully incorporated in the Bogoliubov–de Gennes �BdG�
evaluation of Ref. 15 although the quasiparticlelike presen-
tation introduces a different perspective. In the discussion of
this section we disregarded the offset for the 1D rings in
order to focus on the aspects related to the opening of an
indirect gap. In Sec. III we include the offset consistently in
the BdG evaluation of the multichannel annulus.

It is worthwhile to note that the condition ���c �or R
�Rc� only refers to the periodicity of the supercurrent. It
does not guarantee an hc /2e periodicity of the order param-
eter � or the total energy but only of their derivatives. These
quantities need a continuous energy spectrum with degenera-
cies for flux values which are multiples of hc /2e.6,14

III. MULTICHANNEL RING: ANNULUS

In this section we describe a superconducting loop of fi-
nite width as shown in Fig. 5 with an inner radius R1 and an
outer radius R2. For such an annulus, we choose a continuum
approach on the basis of the BdG equations. For integer and
half-integer flux values, these equations can be solved ana-
lytically, as we show in Sec. III A. For an arbitrary magnetic
flux, we discuss a numerical solution in Sec. III B.

Consider the BdG equations for spin singlet pairing,

Enun�r� = � 1

2m
�i� � +

e

c
A�r��2

− ��un�r� + �vn�r� ,

Envn�r� = − � 1

2m
�i� � −

e

c
A�r��2

− ��vn�r� + ��un�r� ,

�15�

with the self-consistency condition �gap equation� for the
order parameter ��r�,

��r� = V�
n

un�r�vn
��r�tanh�En

2T
� , �16�

where V is the local pairing potential. For an annulus of finite
width we separate the angular part of the quasiparticle wave
functions un�r� and vn�r� using polar coordinates r= �r ,��
and the ansatz,

un�r,�� = un�r�ei�k+q��/2,

vn�r,�� = vn�r�ei�k−q��/2 �17�

where k and q are either both even or both odd integers. Thus
�k is the angular momentum as for the 1D ring and n
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FIG. 4. Crossover from the hc /e-periodic normal persistent current to the hc /2e-periodic supercurrent in a ring with N=26 at T=0. For
this ring size �c0.24t. The discontinuities occur where the � derivative of the highest occupied state energy changes sign.
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= �k ,�� with the radial quantum number �. The order param-
eter factorizes into ��r ,��=��r�eiq�, where the radial com-
ponent

��r� = V�
n

un�r�vn
��r�tanh�En

2T
� �18�

is real. For a magnetic flux � threading the interior of the
annulus we choose the vector potential A�r ,��=e�� / �2�r�,
where e� is the azimuthal unit vector. With �= �e /hc�� and

�− i � �
�

r
e��2

= −
1

r
�r�r�r� +

1

r2 �− i�� � ��2, �19�

the BdG equations therefore reduce to radial differential
equations for un�r� and vn�r�,

Enun�r� = − � �2

2m

�r

r
�r�r� −

�2lu
2

2mr2 + ��un�r� + ��r�vn�r� ,

Envn�r� = � �2

2m

�r

r
�r�r� −

�2lv
2

2mr2 + ��vn�r� + ��r�un�r� ,

�20�

with the canonical angular momenta,

�lu =
�

2
�k + q − 2�� , �21�

�lv =
�

2
�k − q + 2�� . �22�

The number q plays the same role as in Sec. II. Here we
choose q for each value of the flux to minimize the total
energy of the system. The flux for which q changes to the
next integer can therefore deviate from the values �2n−1� /
4, where we fixed the change in q for the 1D model.

A. Hankel-function ansatz

A natural choice of an ansatz for the solutions of the
coupled differential equations 	Eq. �20�
 are linear combina-
tions of the Hankel functions, Hl

�1� and Hl
�2�, since they are

individually solutions of the uncoupled Eq. �20� for ��r�
=0;

�1

r
�r�r�r� −

l2

r2�Hl
�1,2���r� = �2Hl

�1,2���r� . �23�

We therefore take un�r� and vn�r� of the form

un�r� = un	Hlu
�1���n

ur� + cn
uHlu

�2���n
ur�
 , �24�

vn�r� = vn	Hlv

�1���n
vr� + cn

vHlv

�2���n
vr�
 . �25�

Equation �20� then becomes

	Enun�r�
 = − � �2

2m
��n

u�2 + ��un�r� + ��r�vn�r� ,

Envn�r� = � �2

2m
��n

v�2 + ��vn�r� + ��r�un�r� . �26�

The coefficients �n
� and cn

�, with �=u ,v, are fixed by the
open boundary conditions, for which un�r� and vn�r� vanish
on the inner and outer boundaries of the annulus: un�R1�
=un�R2�=0 and vn�R1�=vn�R2�=0. This generates the defin-
ing equations for �n

� and cn
�,

cn
� = −

Hl�
�1���n

�R1�

Hl�
�2���n

�R1�
= −

Hl�
�1���n

�R2�

Hl�
�2���n

�R2�
. �27�

For all integer and half-integer values of flux, q=2� in the
ground state; thus lu= lv=k /2. Assuming a constant order pa-
rameter ��r�=�, the r dependence drops out from Eq. �26�,
and we find the eigenvalues and eigenvectors of the usual
BCS type,

En =�� �2

2m
�n

2 − ��2

+ �2, �28�

with �n=�n
u =�n

v and

un =
1

2
�1 + � �2

2m
�n

2 + ��/En� , �29�

vn =
1

2
�1 − � �2

2m
�n

2 + ��/En� . �30�

These are the two distinct classes of superconducting states
as discussed for the 1D loop: for integer flux values, � is
given by summing over all even angular momenta k, whereas
for half-integer flux values, � is obtained by summing over
odd angular momenta.

For general values of magnetic flux, lu and lv are different
and so are �n

u and �n
v. The r dependence of un�r� is therefore

different from vn�r� as contained in Eqs. �24� and �25�. In the
Appendix we analyze the solution of the uncoupled Eq. �20�
for �=0 and find that the eigenfunctions account for the
flux-induced Doppler shift by shifting their nodes closer to-
gether or further apart—most importantly, un�r� shifts its
nodes in the opposite direction than those in vn�r�. This im-

R1

R2

FIG. 5. Annulus with inner radius R1 and outer radius R2. For a
magnetic flux threading the interior of the annulus, the radial part of
the Bogoliubov–de Gennes equations is solved numerically with a
discretized radial coordinate.
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plies that un�r� and vn�r� with the ansatz of Eqs. �24� and
�25� cannot be solutions of the coupled Eq. �26� for ��r�
�0.

Moreover, we show in the Appendix for the limit of a thin
annulus �R1�R2−R1� that both the Doppler shift and the
shift of the nodes of un�r� and vn�r� are in leading-order
linear functions of q−2�. It is therefore not possible to find
an approximate solution of Eq. �20� that contains the effects
of the Doppler shift but neglects the shift of the nodes. Con-
sequently, we have to resort to a numerical solution of the
radial component of the BdG equations.

B. Self-consistent numerical solution

The numerical solution of Eq. �20� is achieved by dis-
cretizing the interval 	R1 ,R2
 for the radial coordinate r into
M radii ri, which defines the grid constant a= �R2−R1� /M. In
this way we obtain for each angular momentum �k M radial
eigenstates �channels�, which correspond to the M eigen-
states with the lowest eigenenergies En of the continuum
model. On this set of M radial coordinates, we use the sym-
metric discrete differential operators �i f�ri�= 	f�ri+1�
− f�ri−1�
 /a and �i

2f�ri�= 	f�ri+1�+ f�ri−1�−2f�ri�
 /a2. Insert-
ing these discrete operators into Eq. �20� and using
�1 /r��rr�r= �1 /r��r+�r

2, one obtains the eigenvalue equation,

� t̂ + �̂k
u

�̂

�̂ − t̂ − �̂k
v��un

vn
� = En�un

vn
� , �31�

where un and vn are real and the operators t̂, �̂k
�, and �̂ are

defined through

t̂un�ri� = t	un�ri+1� + un�ri−1�
 + t
a

ri
	un�ri+1� − un�ri−1�
 ,

�32�

and

�̂k
�un�ri� = t�a2

ri
2 l�

2 − 2�un�ri� , �33�

�̂un�ri� = ��ri�un�ri� , �34�

where t=�2 / �2ma2�. A self-consistent solution of Eq. �31�
and the gap equation,

FIG. 6. �Color� Non-self-consistent calculation of current and
energy at T=0. The circulating current �upper panel� in an annulus
with an inner radius R1=100a and an outer radius R2=150a is
shown for fixed, � independent �=0 �light blue line�, �=0.002t
�blue line�, �=0.004t �dark blue line�, and �=0.006t �black line�.
The lower panel shows the difference between the total energy of
the annulus as a function of � and the total energy at zero flux for
the same values for � as above.

FIG. 7. �Color� Self-consistent calculations for the same annulus
as in Fig. 6. In addition, the top panel displays the self-consistent
order parameter � as a function of �. The lines correspond to the
pairing interaction V=0 �light blue line�, V=0.28t �blue line�, V
=0.32t �dark blue line�, and V=0.38t �black line�. The black arrows
mark the positions of the q jump for V=0.38t and V=0.32t.
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��ri� = V�
n

un�ri�vn�ri�tanh�En

2T
� , �35�

is found iteratively. The operator t̂ consists of a symmetric
and an antisymmetric part with respect to ri−1 and ri+1. In
order to ensure that the eigenvalues of Eq. �31� are real, the
prefactor of the second antisymmetric term in Eq. �32� must
be smaller or equal to the prefactor of the symmetric term,
which means M � �R2−R1� /2R1. This condition is fulfilled
since M = �R2−R1� /a� �R2−R1� /2R1.

Once the eigenfunctions of Eq. �31� are known, we obtain
the current by evaluating the expectation value of the gauge-
invariant current operator.24 The expectation value J�r� of the
circulating current is found using a Bogoliubov transforma-
tion and ansatz �17� in polar coordinates;

J�r� =
�e

m
�
n

	Jn
u�r�f�En� − Jn

v�r�f�− En�
 , �36�

with

Jn
��r� =

�e

m
Im��n

��r,���−
i

r
�� −

�

r
��n�r,��� =

�e

m

l�

r
�n

2�r�

�37�

for �=u ,v. The contribution of each quasiparticle state to the
total current is therefore determined by its angular velocity
l�. The radial quantum number � and the � dependence enter
only through the occupation probability which is controlled
by the eigenenergy En. Further, the total energy of the system
is given by

E =
1

M
�
n

En�
i

	un
2�ri�f�En� + vn

2�ri�f�− En�
 . �38�

C. Results

The results of the non-self-consistent calculations for the
circulating current and the total energy at T=0 and for fixed
values of � are displayed in Fig. 6. In the normal state ��
=0�, there are �M eigenstates close enough to EF to cross
EF as a function of �, unlike in small 1D rings where only
one state crosses EF. For each crossing, a small jump appears
in the current as a function of �. There is a larger jump at the
value of � where the energies of the even-q and odd-q states
become degenerate and q switches to the next integer. The
shape of this function depends on the distribution of eigenen-
ergies close to EF and therefore on microscopic details of the
geometry of the annulus and the Fermi energy EF. A finite �
allows for a flux regime with direct energy gap and no cross-
ings of EF; thus in this regime the current is linear and the
total-energy quadratic in �. For the largest value ��
=0.006t� shown, there is a direct gap for all values of �.
Even for this value of �, the current and the energy are not
exactly hc /2e periodic because of the energy difference of
the even-q and odd-q states in finite systems.12,15

The introduction of self-consistency in � does not funda-
mentally change these basic observations �Fig. 7�. The cross-
over is then controlled by the pairing interaction strength V,

for which we chose such values as to reproduce the crossover
from the normal state to a state with direct energy gap for all
flux values. The order parameter � is now a function of �. If
���=0��0.006t �cf. Fig. 6�, the gap closes with � and �
decreases whenever a state crosses EF. At these flux values
we observe a sharp increase in the total energy of the annu-
lus. Unlike in 1D, � does not drop to zero at the closing of
the energy gap but decreases stepwise. In two or three di-
mensions, � remains finite beyond �c because it is stabilized
by contributions to the condensation energy from pairs with
relative momenta perpendicular to the direction of the cur-
rent flow and the closing of the indirect energy gap does not
destroy superconductivity.25,26 Apart from these steps, the
current �energy� shows the standard linear �quadratic� behav-
ior.

The offset of the q jump is only relevant for values of V
for which � is finite for all �. In Fig. 7, the offset is clearly
visible for the largest two values of V �marked with black
arrows�. Its sign depends on the geometry of the annulus and
the pairing interaction V—the offset changes sign for in-
creasing V �cf. Ref. 21�.

Experimentally more relevant is to control the crossover
through temperature. With the pairing interaction V suffi-
ciently strong to produce a T=0 energy gap much larger than
the maximum Doppler shift, the crossover regime is reached
for temperatures slightly below Tc. For the annulus described
in Fig. 8, the crossover proceeds within approximately 1% of
Tc. The crossover regime gets narrower for larger rings pro-
portional to the decrease in the Doppler shift. In the limit of
a quasi-1D ring of radius R we can be more precise. If we
define the crossover temperature T� by ��T��=�c and assum-
ing �c��, we can use the Ginzburg-Landau form of the
order parameter,

��T�
��0�

 1.75�1 −
T

Tc
, �39�

and obtain

Tc − T�

Tc


�c
2

3.1��0�2 =
t2

12.4��0�2R2 =
EF

2

3.1Tc
2R2 . �40�

For a ring with a radius of 2500 lattice constants
�10 �m� and ��0�=0.01t �3 meV�, one finds the ratio
�Tc−T�� /Tc1.3�10−4. This is in reasonable qualitative
agreement with the experimental results of Little and
Parks,9,10 discussed also by Tinkham.27 Their theoretical pre-
diction is similar to Eq. �40�, up to a factor in which they
include a finite mean-free path. Moreover, they do not in-
clude the difference introduced through even-q and odd-q
states. This difference was considered in the calculations of
Tc by Bogachek et al.13 in the one-channel limit. In Eq. �40�
the value of ��0� is in fact different for even and odd q’s.
Although quantitative predictions of Tc−T� of the theory pre-
sented here might be too large compared to the experiment, it
serves as an upper limit because it describes the maximum
possible persistent current. Scattering processes in real sys-
tems will further reduce Tc−T�.
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For temperatures close to Tc, the difference of the
eigenenergies of even-q and odd-q states is less important
than at T=0. Thus the deviation from the hc /e periodicity of
the current and of the order parameter is smaller. Further-
more, persistent currents in the normal state are exponen-
tially small compared to the persistent supercurrents below
Tc. Their respective hc /e-periodic behavior is therefore es-
sentially invisible in the flux regime where �=0. For the
annulus described in Fig. 8, the difference between ���
=0� and ���=1 /2� is still visible, but the corresponding
differences in the current are too small.

IV. CONCLUSIONS

We have described the crossover from the hc /e-periodic
persistent currents as a function of magnetic flux in a metal-
lic loop to the hc /2e-periodic persistent supercurrent in a 1D
loop as well as in a multichannel annulus. While a 1D super-
conducting ring is a rather idealized system, it proves valu-
able for discussing the physics of this crossover. A ring with
a radius smaller than half the superconducting coherence
length shows an hc /e-periodic supercurrent, which reaches
the critical current at a critical flux value �c, determined by
the flux-dependent closing of the gap. Assuming that this
relation remains unchanged on a ring with finite thickness
d�R, as indeed suggested by the multichannel model, Rc

would be of the order of 1 �m for aluminum rings. In two or
three dimensions, � remains finite beyond �c. The
temperature-controlled crossover, while cooling through Tc,
appears within a temperature window proportional to 1 /R2

and thus appears hard to detect in experiment.
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APPENDIX: DOPPLER SHIFT AND NODES OF THE
HANKEL-FUNCTION ANSATZ

The ansatz for un�r� and vn�r� with two Hankel functions
	Eqs. �24� and �25�
 solves the normal-state Schrödinger
equation for the annulus as well as the BdG equations in the
superconducting state with integer and half-integer flux val-
ues. In this appendix we show that it is not possible to con-
struct an approximate analytic solution for the superconduct-
ing annulus that includes the effect of the Doppler shift. In
this case un�r� and vn�r� have the independent eigenenergies
��2 /2m���n

u�2 and ��2 /2m���n
v�2.

For this purpose we analyze the relation between the Dop-
pler shift of the eigenfunctions of the annulus in the normal
state ��=0� and the shift of their nodes with respect to the
radial coordinate using the following asymptotic form for the
Hankel functions:28

Hl
�1,2�� l

cos x
� =� 2

�l tan x
exp��i�l tan x − lx −

�

4
�� ,

�A1�

which approximates Hl
�1�/�2� for l�1. Choosing x

=arccos�l /�r� leads with tan�arccos x�=�1−x2 /x to

Hl
�1,2���r� =� 2

�l
���r

l
�2

− 1�−1/4

�exp��i�r��2 −
l2

r2 − l arccos
l

�r
−

�

4
�� .

�A2�

Thus Eq. �A2� approximates Hl
�1,2���r� for �r�1. Inserting

Eq. �A2� into the boundary conditions 	Eq. �27�
 determines
the constants cn

� and �n
�;

cn
� = exp�2i�Dn

��R1� −
�

4
�� = exp�2i�Dn

��R2� −
�

4
�� ,

�A3�

with

FIG. 8. �Color online� The order parameter � and the persistent
current for the temperature-driven transition from the normal to the
superconducting state in an annulus with inner radius R1=30a and
outer radius R2=36a. The pairing intercation is V=0.7t, with a criti-
cal temperature of Tc0.0523t for zero flux. For these parameters
��T=0�0.1t. The lines �from top to bottom� correspond to the
temperatures T=0.0513t, T=0.0520t, and T=0.0522t. Notice that �
is slightly different for the flux values �=0 and �1 /2.
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Dn
��r� = r���n

��2 −
l�
2

r2 − l� arccos
l�

�n
�r

. �A4�

The wave functions un�r� and vn�r� 	Eqs. �24� and �25�
 be-
come

un�r� = un� 8

�lu
���n

ur

lu
�2

− 1�−1/4

�ei	Dn
u�R1�+�/4
 sin	Dn

u�r� − Dn
u�R1�
 , �A5�

vn�r� = vn� 8

�lv
���n

vr

lv
�2

− 1�−1/4

�ei	Dn
v�R1�+�/4
 sin	Dn

v�r� − Dn
v�R1�
 . �A6�

The vanishing of the wave function for r=R2 therefore im-
plies that

Dn
��R2� − Dn

��R1� = − �� �A7�

for an integer �, which determines �n
�. In the limit of a thin

annulus �R1�R2−R1�, we expand Dn
��r� in 1 /r and find

Dn
��r� − Dn

��R1�  �r − R1���n
� −

l�
2

2�n
�rR1

� . �A8�

With this asymptotic form the boundary condition �A7� be-
comes a quadratic equation in �n

�,

��n
��2 −

��

R1 − R2
�n

� −
l�
2

2R1R2
= 0, �A9�

which has the positive solution,

�n
� =

1

2
� ��

R1 − R2
+�� ��

R1 − R2
�2

+
l�
2

2R1R2
� . �A10�

This is the simplest possible approximation for the eigenen-
ergies of the uncoupled equations ��=0� of the annulus con-
taining the Doppler shift, which is controlled by l�

2 . The flux
� enters lu and lv with different signs 	see Eq. �22�
. Thus, if
�n

u decreases as a function of �, �n
v increases. Since q−2�

1 in the ground state, the Doppler shift ��2 /2m�	��n
��2�q

−2��− ��n
��2�0�
 is linear in leading order in �q−2�� /�R1.

We further find the nodes rnm of un�r� and vn�r� by setting
expression �A8� equal to �m, where m is a positive integer,
and solving it for r�0,

rnm =
1

2
�R1 +

l�
2

2��n
��2R1

−
�m

�n
�

+��R1 +
l�
2

2��n
��2R1

−
�m

�n
� �2

−
2l�

2

��n
��2� .

�A11�

The shift of the nodes rnm�q−2��−rnm�0� as a function of
flux is again linear in �q−2�� /�R1 to leading order. Thus
both the Doppler shift and the nodes of un�r� shift linearly
with � and conversely when compared with the Doppler
shift and the nodes of vn�r�.

The coupled Eq. �26� for ��0 resulting from ansatz �24�
and �25� with noninteger �or non-half-integer� flux can be
solved only by wave functions un�r� and vn�r� with the same
r dependence. To obtain a solution of this problem, one can
expand the wave functions as a sum of Hankel functions and
numerically solve for the coefficients or directly solve the
coupled differential equations numerically.
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