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Abstract. We investigate the influence of temperature and dissipation on the
Landau–Zener transition probability in circuit QED. Dissipation is modelled
by coupling the transmission line to a bath of harmonic oscillators, and the
reduced density operator is treated within Bloch–Redfield theory. A phase-space
representation allows an efficient numerical implementation of the resulting
master equation. It provides reliable results which are valid even for rather low
temperatures. We find that the spin-flip probability as a function of temperature
and dissipation strength exhibits a non-monotonic behaviour. Our numerical
results are complemented by analytical solutions for zero temperature and for
vanishing dissipation strength.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 10 (2008) 115012
1367-2630/08/115012+20$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:david.zueco@physik.uni-augsburg.de
http://www.njp.org/


2

Contents

1. Introduction 2
2. Model and master equation 3

2.1. Landau–Zener dynamics in circuit QED . . . . . . . . . . . . . . . . . . . . . 3
2.2. Dissipative dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Solving the master equation in phase space . . . . . . . . . . . . . . . . . . . 7

3. Landau–Zener tunnelling at finite temperature 7
4. Dissipative Landau–Zener transitions 10

4.1. The zero-temperature limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2. Thermal excitations and dissipative transitions . . . . . . . . . . . . . . . . . . 11

5. Conclusions 13
Acknowledgments 15
Appendix A. Derivation of the quantum master equation 15
Appendix B. Basis expansion 17
References 19

1. Introduction

The demonstration of coherent quantum dynamics in superconducting flux and charge
qubits [1]–[3] represents a major step towards a solid-state implementation of a quantum
computer. Manipulation and readout of a qubit can be achieved by a controlled interaction
with an electromagnetic circuit. For charge qubits implemented with Cooper-pair boxes, this
can be established either by a capacitive coupling to a transmission line [4, 5] or an oscillating
circuit [6, 7] which can be modelled as a harmonic oscillator. The corresponding qubit–oscillator
model also plays a role for the description of a flux qubit that couples inductively to an
embracing dc SQUID [8]. These setups represent solid-state realizations of a two-level atom in
an optical cavity [9, 10]. As compared to optical realizations, most solid-state implementations
are characterized by a much larger ratio between qubit–oscillator coupling and oscillator
linewidth [5].

Circuit quantum electrodynamics (QED) experiments have already demonstrated quantum
coherent dynamics [11], measurements with low backaction [7, 12] and the creation of
entanglement between two qubits in a cavity [13, 14]. A further crucial prerequisite for a
working quantum computer is quantum state preparation, i.e. the initialization of the qubits.
It has been suggested to achieve this goal by switching a control parameter through an avoided
crossing with an intermediate velocity, such that the resulting Landau–Zener transition is neither
in the adiabatic nor in the diabatic limit [15, 16]. Then the avoided crossing effectively acts like
a beam splitter.

The physics of Landau–Zener tunnelling is also of relevance for adiabatic quantum
computation which relies on the time evolution of the ground state of a quantum system
of a slowly time-dependent Hamiltonian [17]. In this scheme, relevant sources of errors are
Landau–Zener transitions at avoided crossings between adiabatic energy levels. For an isolated
two-level system, the corresponding transition probability has been derived in the classic works
by Landau [18], Zener [19], and Stueckelberg [20]. When the qubit is coupled to a heat bath,
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this probability may change significantly. However, system–bath interactions also exist for
which the transition probability at zero temperature surprisingly is not affected at all by the
coupling to a harmonic-oscillator bath [21] or a spin bath [22, 23]. For a heat bath with
Ohmic spectral density, the transition probability at high temperatures is bath-independent as
well [24]–[28]. The same holds true for the coupling to a classical noise source [29]–[31].

With this work, we study finite temperature Landau–Zener transitions of a qubit that
couples via a harmonic oscillator to a heat bath. For the qubit itself, this represents a case of a
structured heat bath, because owing to its linearity, the oscillator plus the bath can be considered
as an effective bath with a peaked spectral density [32]–[40] for which we provide results for
the dissipative Landau–Zener problem for finite temperatures. In doing so, we restrain from
eliminating this extra oscillator degree of freedom because in the present context, the oscillator
dynamics is of experimental interest as well. The organization of the work is as follows. In
section 2, we introduce the qubit–oscillator–bath model and its treatment within Bloch–Redfield
theory. Section 3 is devoted to Landau–Zener transitions for a thermal initial state, whereas in
section 4, we investigate dissipative transitions. Details of the derivation of the quantum master
equation and its numerical treatment are deferred to the appendices.

2. Model and master equation

2.1. Landau–Zener dynamics in circuit QED

Circuit QED involves a Cooper pair box that couples capacitively to a transmission line which is
described as a harmonic oscillator [5]. The Cooper pair box is formed by a dc SQUID such that
the effective Josephson energy EJ = E0

J cos(π8/80) can be tuned via an external flux 8, where
80 denotes the flux quantum. We assume that 8 can be switched such that EJ = h̄vt, v > 0, in
a sufficiently large time interval. The capacitive energy 1

2 EC(N − Ng)
2 is determined by the

number N of Cooper pairs on the island and the scaled gate voltage Ng. In the charging limit
EC � EJ, only the two states |N = 0〉 and |N = 1〉 determine the physics, and one defines the
qubits states |↑〉 ∝ |0〉 + |1〉 and |↓〉 ∝ |0〉 − |1〉. Then, at the charge degeneracy point Ng = 1/2,
the Hamiltonian reads

Hs = −h̄
vt

2
σz + h̄gσx(a

† + a) + h̄�a†a, (1)

where the first term describes the qubit in pseudo spin notation with σz|↑,↓〉 = ±|↑, ↓〉. The
second term refers to the coupling of the qubit to the fundamental mode of the transmission
line which is described as a harmonic oscillator with angular frequency � and with the usual
bosonic creation and annihilation operators a† and a, and the energy eigenstates |n〉, n =

0, 1, . . . ,∞. Note that below we also consider the case of strong qubit–oscillator coupling for
which a rotating-wave approximation for the coupling Hamiltonian is not justified.

When the effective Josephson energy is switched from a large negative value to a large
positive value, the system exhibits interesting quantum dynamics, which can be qualitatively
understood by computing the adiabatic energies as a function of time, see figure 1: for
low temperatures, we can assume that both the qubit and the oscillator are initially in their
instantaneous ground state |↑, 0〉. As time evolves, the system will adiabatically follow the
state |↑, 0〉 until at time t = �/v, an avoided crossing is reached. Then the system will evolve
into the superposition α(v)|↑, 0〉 + β(v)|↓, 1〉 with velocity-dependent probability amplitudes.
This means that by adjusting the sweep velocity v, one can generate a single-photon state

New Journal of Physics 10 (2008) 115012 (http://www.njp.org/)

http://www.njp.org/


4

−2

0

2

4

E
(h̄

Ω
)

−4 −2 −1 0 1 2 4

EJ = h̄vt [h̄Ω]

Figure 1. Adiabatic energy levels of the qubit–oscillator Hamiltonian (1) as a
function of the Josephson energy which is swept at constant velocity such that
EJ = h̄vt . The arrows mark the values of EJ where the anticrossings are located.

or qubit–oscillator entanglement [15]. For the time-evolution from t = −∞ to t = ∞, the
corresponding bit-flip probability can be evaluated exactly and reads [15]

P↑→↓ = 1 − e−2πg2/v. (2)

Note that this generalization of the Landau–Zener formula is also valid for large qubit–oscillator
coupling g � � for which more than two levels are relevant and, thus, the scenario sketched
above becomes more involved.

2.2. Dissipative dynamics

Dissipative effects in an electromagnetic circuit are characterized by an impedance Z(ω) which,
within a quantum mechanical description, can be modelled by coupling the circuit bilinearly to
its electromagnetic environment [41]. This provides the system–bath Hamiltonian [42]–[45]

Htot = H̃s + (a† + a)
∑

k

h̄ck(b
†
k + bk) +

∑
k

h̄ωkb†
kbk, (3)

where H̃s = Hs + (a† + a)2
∑

h̄c2
k/2ωk is the Hamiltonian of the qubit and the transmission line

augmented by a counterterm, such that a frequency renormalization due to the coupling to the
bath is cancelled [42, 43, 45, 46]. The second and third term describe the capacitive coupling
of the transmission line to a bath of harmonic oscillators. The bath is fully characterized by its
spectral density

J (ω) =

∑
k

c2
k δ(ωk − ω) =

1

2π

√
L

C
ω Re Z(ω) . (4)

The second equality relates the system–bath model to the classical circuit theory, where L and
C are the specific inductance and capacitance of an effective transmission line that forms the
dissipative environment. This relation can be established by comparing the resulting quantum
Langevin equation with Kirchhoff’s laws [41, 47].

Since we are only interested in the dynamics of the qubit and the oscillator, all relevant
information is contained in the reduced density operator ρ = trBρtotal, which is obtained
by tracing out the bath degrees of freedom. For weak system–bath coupling, the bath can
be eliminated within the Bloch–Redfield theory [48, 49] in the following way: assuming
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that initially, the bath is at thermal equilibrium and not correlated with the system, ρtot ∝

ρ ⊗ exp(−
∑

k h̄ωkb†
kbk/kBT ), one derives within perturbation theory the quantum master

equation

d

dt
ρ = −

i

h̄
[Hs, ρ] −

∫
∞

0
dτ
{
S (τ )[Q, [Q(−τ), ρ]] + iA (τ )[Q, [Q(−τ), ρ]+]

}
, (5)

where [A, B]+ = AB + B A and [A, B] = AB − B A denote the anti-commutator and the
commutator, respectively, whereas the scaled ‘position’ Q = a + a† is the system operator to
which the bath couples. The first term describes the unitary evolution generated by the system
Hamiltonian, whereas the second one captures the dissipative influence of the environment.
The dissipative terms depend on the system dynamics through the Heisenberg operator Q(t) =

eiHst/h̄ Qe−iHst/h̄ . The bath enters via the symmetric and the antisymmetric correlation functions

S (t) =
1

2
〈[ξ(t), ξ ]+〉eq =

∫
∞

0
dω J (ω) coth

( h̄ω

2kBT

)
cos(ωt), (6)

A (t) =
1

2i
〈[ξ(t), ξ ]〉eq =

∫
∞

0
dω J (ω) sin(ωt), (7)

of the effective bath operator ξ =
∑

k ck(b
†
k + bk). The Markovian master equation implies that

the bath stays always close to equilibrium and that no system–bath correlations build up.
For an explicit form of the master equation, we still need to evaluate the Heisenberg

time evolution of the system operator Q(t). For a time-independent system Hamiltonian,
this can be done exactly by a decomposition into the energy eigenbasis. Then one obtains
the standard Bloch–Redfield approach [48, 49]. For periodically driven systems, the coherent
dynamics is solved by the Floquet states which provide an appropriate basis [50]. The
Hamiltonian (1), however, possesses a more general time dependence and, thus, we have to
resort to further approximations. If EJ ∼ h̄�, one could employ a rotating-wave approximation
(RWA) for the cavity–qubit coupling, σx(a + a†) ∼= σ+a + σ−a† with σ± = σx ± iσy . Within
RWA, the Hamiltonian (1) turns into the Jaynes–Cummings model for which the eigenvalues
and eigenvectors are known [51]. Far off resonance, by contrast, i.e. for h̄� � EJ or h̄� � EJ,
an adiabatic approximation for either the qubit or the harmonic oscillator [52, 53] is helpful.
For the present case of a Landau–Zener sweep, however, the Josephson energy assumes all
values from −∞ to +∞, such that generally none of these approximations is well suited.
Therefore, we resort to a weak-coupling approximation in the qubit–oscillator interaction g.
The corresponding solution of the Heisenberg equations for the dimensionless position operator
Q(t) is derived in appendix A and reads

Q(t) = a†ei�t + ae−i�t + g
[
Ic(t)σx − Is(t)σy

]
(8)

with the time-dependent functions Ic(t) = �[cos(�t) − cos(ωJt)]/(�2
− ω2

J ) and Is(t) =

[ωJ sin(�t) − � cos(ωJt)]/(�2
− ω2

J ), where ωJ = EJ/h̄. In the derivation of this expression,
we have neglected all terms of order (gt)2. Note that this approximation is used only for
the evaluation of the dissipative kernels of the master equation (5), whereas for the solution
of the master equation, the qubit–oscillator coupling is treated exactly. This means that we
neglect dissipative terms of the order γ g2/�3 only, which is justified for a weak oscillator–bath
coupling.
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For the further evaluation, we still need to specify the spectral density J (ω). Assuming that
the environment is strictly ohmic with � = 1/

√
LC , we obtain from equation (4)

J (ω) =
γ

2π�
ω (9)

with the effective damping rate γ . Inserting expressions (6)–(8) into equation (5), we arrive at
the explicit quantum master equation (see again appendix A)

d

dt
ρ = −

i

h̄
[Hs, ρ] − i

γ

4�
[Q, [Q̇, ρ]+] −

γ

4
Dpp[Q, [Q, ρ]] −

γ

4�
Dxp[Q, [Q̇, ρ]]

−
γ

4
Fσ [Q, [σz, ρ]] (10)

with the operator Q̇ = (i/h̄)[Hs, Q] = i�(a†
− a) and the diffusion constants

Dpp ≡ coth
(

h̄�

2kBT

)
, (11)

Dxp =
ν1ω

2
c

2(ω2
c + �2)

∞∑
n=−∞

�2
− νnωc

(νn + ωc)(ν2
n + �2)

, (12)

which refer to momentum diffusion and to cross-diffusion, respectively, whereas νn = 2πkBT/h̄
denotes the Matsubara frequencies and ωc is a high-frequency Drude cutoff. The prefactor of
the last term contains an effective force

Fσ =
g

2(�2 − ω2
J )

[
ωJ coth

( h̄ωJ

2kBT

)
− � coth

( h̄�

2kBT

)]
, (13)

which acts on the oscillator and depends on the state of the qubit. This means that the qubit
dynamics influences the dissipative terms despite the fact that it couples to the bath only
indirectly via the oscillator. This influence vanishes in the high-temperature limit, where in
addition the diffusion coefficients become Dpp = 2kBT/h̄� and Dxp = 0, such that dissipative
terms in equation (9) reduces to those of the well-known form derived in [54].

The cross-diffusion term ∝ Dxp can be rather cumbersome due to its explicit dependence
on the cutoff ωc, which yields an ultraviolet divergence. Still it is possible to avoid its
explicit evaluation and, thus, to render the cutoff obsolete with renormalization arguments: the
divergence and its regularization can be related to the ultraviolet divergence for the equilibrium
momentum variance 〈Q̇2

〉eq for which we find the relation

γ

�
Dxp = 〈Q2

〉eq − �2
〈Q̇2

〉eq, (14)

where 〈 · · · 〉eq denotes the thermal average. It turns out that in the solution of the quantum
master equation, Dxp appears only in the combination 〈Q2

〉eq = γ Dxp/� + Dpp (see discussion
below equation (B.3)), neglecting Dxp is consistent with a weak-coupling approximation. Since
for the harmonic oscillator the exact relation 〈Q2

〉eq = Dpp/�2 holds [55], the replacement
Dxp → 0 provides the correct equilibrium expectation values, even in the limit of low
temperatures.
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2.3. Solving the master equation in phase space

The numerical solution of the quantum master equation (10) requires an appropriate basis
expansion. For the qubit, we choose the eigenstates of σz, i.e. |↑〉 and |↓〉. The resulting
projection elements ρi j with i, j =↑, ↓ are operators in the Hilbert space of the harmonic
oscillator. For these, at first sight, the natural basis is provided by the Fock states |n〉. With
increasing temperature, however, good convergence is obtained only for a relatively large
number of states. Then it is advantageous to transform the operators ρi j to a phase-space quasi
distribution like the Wigner representation [56] which can be defined as

W j j ′(x, p) =
1

2π

∫
∞

−∞

dy eiypρ j j ′

(
x −

1
2 y, x + 1

2 y
)
. (15)

The actual transformation can be accomplished by using Bopp operators [56]. Introducing for
the qubit part the matrix notation

W(x, p) ≡

(
W↑↑ W↑↓

W↓↑ W↓↓

)
, (16)

one obtains for the master equation (10) the Wigner representation

∂tW = LhoW + i
EJ

2h̄
[σz, W] + g∂p[σx , W]+ + igx[σx , W] − iγ Fσ∂p[σx , W]. (17)

The Fokker–Planck-like operator

Lho ≡ −�(p∂x + x∂p) + γ ∂p p + γ Dpp∂
2
p + γ Dxp∂

2
xp, (18)

governs the dissipative time-evolution of the harmonic oscillator, whereas the next three terms
describe the coherent time evolution of the qubit and its coupling to the oscillator. The last term
refers to the modification of the dissipative terms that stems from the qubit–oscillator coupling.

The main advantage of this representation comes from the fact that the oscillator part Lho

is formally identical (with Dxp = 0) to the Klein–Kramers operator [43, 57] for the classical
dissipative oscillator, which allows one to adapt techniques for solving Fokker–Planck equations
to quantum master equations [50, 58, 59]. In particular, we will use the eigenfunctions φnn′(x, p)

of Lho which obey the eigenvalue equation [60]

Lhoφnn′(x, p) = (nλ + n∗λ∗)φnn′(x, p), n, n′
= 0, 1, 2, . . . , (19)

where λ = −γ /2 + i(�2
− γ 2/4)1/2; see appendix B.1. The ‘ground state’ φ00 is the Wigner

representation of the density operator of the harmonic oscillator at thermal equilibrium. Thus,
if the oscillator stays close to equilibrium, the decomposition of the density operator can be
performed with only a few basis states—irrespective of the temperature. The resulting equations
of motion for the coefficients can be found in appendix B.

3. Landau–Zener tunnelling at finite temperature

Thermal effects can modify the Landau–Zener transition probability (2) even in the absence of
dissipation, i.e. for γ = 0. Then the natural initial state is no longer the (initial) ground state
|↑, 0〉, but rather

ρ(t = −∞) = |↑〉〈↑| ⊗
e−Hho/kBT

Z
, (20)
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n= 0 n= 1 n= 2

(a) (b) (c)

Figure 2. Transition paths from the initial states |↑, n〉, n = 0, 1, 2, to
the qubit state |↑〉, i.e. those contributing to the probability P↑→↑ in the
individual-crossing approximation, which is valid for weak qubit–oscillator
coupling g � �.

where Hho = h̄a†a is the cavity Hamiltonian and Z = tr[exp(−Hho/kBT )] the partition
function at temperature T . Note that initially the qubit splitting is infinite, so that even at finite
temperature, only the qubit ground state is populated.

Since γ = 0, the quantum master equation (10) reduces to the unitary von Neumann
equation for the Hamiltonian (1), which is independent of the approximations made in the
derivation of the master equation. Then, the transition probability P↑→↑ is the thermal average
of the transition probabilities for the initial states |↑, n〉, i.e.

P↑→↑ =

∑
n

pn P↑,n→↑ =

∑
n,m

pn P↑,n→↑,m, (21)

where pn = e−nh̄�/kBT /Z and P↑,n→↑,m = |〈↑, n|U (∞; 0)|↑, m〉|
2. It is worth noting that only

terms with n > m contribute to the sum, due to the ‘no-go-up’ theorem [22] which states
that P↑,n→↑,m = 0 for m > n. For the computation of the remaining probabilities P↑,n→↑,m , we
need to resort to an approximation: if all avoided crossings in the adiabatic qubit–oscillator
spectrum (figure 1) are well separated, one can treat the transitions at the avoided crossings
as being independent of each other and compute the transition probabilities P↑,n→↑,m as joint
probabilities [23]. In the vicinity of an avoided crossing, the qubit–oscillator Hamiltonian is
described by the two-level system HTLS =

1
2 h̄vtσz + 1

2 h̄1σx with sweep velocity v and some
level splitting 1. The corresponding probability for a non-adiabatic transition is given by the
standard Landau–Zener expression [18]–[20]

w(1) = e−π12/2v. (22)

For the Hamiltonian (1), the avoided crossings are formed only between states |↑, n〉 and
|↓, n + 1〉 at times t = ∓�/v with the level splitting

1n = 2g
√

n + 1. (23)

Then the only paths that connect two qubit states |↑〉 are sketched in figure 2. For the
initial states |↑, 0〉 and |↑, 1〉, the probabilities to end up in the qubit state |↑〉 then become
P↑,0→↑ = w(2g) and P↑,1→↑ = w(2g)w(2g

√
2), respectively. For oscillator states with n > 1,

two final oscillator states are possible. Assuming that interference terms do not play any role,
we find the transition probability

P↑,n→↑ = w(2g
√

n)w(2g
√

n + 1) + [1 − w(2g
√

n)][1 − w(2g
√

n − 1)], (24)
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Figure 3. Spin-flip probability P↑→↓ as a function of the temperature for various
sweep velocities and g = 0.04 � (a) and for various qubit–oscillator coupling
strengths and v = 0.01 �2 (b). The symbols mark the numerical solution of the
Liouville–von Neumann equation (equation (17), for γ = 0), whereas the solid
lines refer to the individual-crossing result (25). The dashed lines are a guide to
the eye.

which formally also holds for n = 0, 1. Inserting (24) into (21), we obtain the transition
probability P↑→↓ = 1 −

∑
n pn P↑,n→↑, where the sum can be identified as a geometric series.

Evaluating this series yields a central result, namely the Landau–Zener transition probability
for finite temperature and weak qubit–oscillator coupling:

P↑→↓ = f (g2/v) − f (2g2/v) e−2πg2/v +
[

f (g2/v) − f (2g2/v)
]
e2πg2/v , (25)

where the temperature dependence is captured by the function

f (x) =
1 − e−h̄�/kBT

1 − e−(h̄�/kBT +2πx)
, (26)

which for x > 0 vanishes in the high-temperature limit, whereas f (x) = 1 for zero temperature.
In the latter limit, expression (25) becomes identical to equation (2). The independent-crossing
approximation is valid whenever the time between the anti-crossings, t = 2v/�, exceeds the
duration of an individual Landau–Zener transition, τLZ ∼

√
1/v max{1,

√
12/v} [61]. Inserting

the explicit expression (23) for 1n, this condition becomes � > ng. Thus, the analytical
result (25) holds only as long as oscillator states |n〉 with n > �/g are not thermally occupied,
i.e. for kBT < h̄�2/g. Fortunately, in the range of current experimental interest, kBT . h̄� and
g < �, this condition is fulfilled. The numerical results shown in figures 3(a) and (b) confirm
the results of the individual crossing approximation very well. Even for higher temperatures,
kBT > h̄�, we find very good agreement, provided that the qubit–oscillator coupling g is
sufficiently weak, see figure 3(b). Moreover, the time evolution of the population (see figure 6,
below) confirms that the dynamics indeed discerns into two individual transitions.

The temperature dependence of the spin-flip probability P↑→↓ shown in figure 3 possesses
an intriguing non-monotonic behaviour: for low temperatures, kBT . 0.2h̄�, the probability is
almost temperature independent. With an increasing temperature, P↑→↓ first becomes larger,
while it eventually converges to zero in the high-temperature limit. The temperature for which
the spin-flip probability assumes a maximum is essentially independent of the qubit–oscillator
coupling g and increases with the sweep velocity.
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This behaviour can be understood in the individual-crossing scenario sketched in figure 2.
For very low temperatures, initially only the state |↑, 0〉 is significantly populated and, thus,
only the path sketched in figure 2(a) is relevant. For a temperature T ≈ h̄�/kB, also the initial
state | ↑, 1〉 becomes relevant. For this initial state, reaching the final state |↑〉 requires two
non-adiabatic transitions (see figure 2(b)) which enhances the probability to end up in state |↓〉.
With further increasing higher temperature, states |↑, n〉 with n > 2 start to play a role. In the
individual-crossing picture, each of these states can evolve into four possible finale states, two
of which with spin up and two with spin down (see figure 2(c)). Consequently, the probability of
reaching the spin state |↓〉 is no longer enhanced. The relevance of oscillator states with n > 2
also qualitatively explains the fact that P↑→↓ vanishes for high temperatures: in the adiabatic
limit v � g2, the state |↑, n〉 evolves via the state |↓, n − 1〉 into the final state |↑, n − 2〉. In
the opposite limit of fast sweeping, the system essentially remains in its initial state |n, ↑〉. In
both cases, the qubit will predominantly end up in state |↑〉, which complies with our numerical
results.

The non-monotonic temperature dependence is in contrast to the behaviour found for
Landau–Zener transitions of a qubit that is coupled to further spins, for which a monotonic
temperature dependence has been conjectured [23]. The physical reason for this difference is
that the spin coupled to the qubit possesses only one excited state. Then the paths sketched in
figures 2(b) and (c), which are responsible for the non-monotonic temperature dependence, do
not exist.

4. Dissipative Landau–Zener transitions

In the previous section, we have studied the consequences of thermal excitations of the initial
state for the transition probability (2) in the absence of an oscillator–bath coupling, i.e. for
dissipation strength γ = 0. We next address the question how dissipation and decoherence
modify Landau–Zener tunnelling.

4.1. The zero-temperature limit

For a heat bath at zero temperature, the exact solution of the dissipative Landau–Zener problem
has been derived in recent works [21, 22]. Moreover, this limit generally is rather challenging for
a master equation description of quantum dissipation [43, 46]. Therefore, the zero-temperature
limit represents a natural test bed for our Bloch–Redfield master equation.

Let us start with a brief summary of the derivation of the exact expression for
the spin-flip probability P↑→↓, as given in [22]. The central idea is to consider the
cavity plus the bath as an effective bath that consists of ‘∞ + 1’ oscillators [32, 33, 35],
[37]–[40]. Then the qubit–oscillator coupling operator σx(a + a†) is replaced by a qubit–bath
coupling of the type σx

∑
k′(ā

†
k′ + āk′), where (ā†

k′ + āk′) denotes the normal coordinates of
the effective bath. Thus, the total Hamiltonian (3) can be written in terms of the spin-boson
Hamiltonian [55]

Htot = −
EJ(t)

2
σz + h̄gσx

∑
k′

c̄k′(ā†
k′ + āk′) +

∑
k′

h̄ω̄k′ ā†
k′ āk′ . (27)
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Moreover, the transformation to the normal coordinates provides the effective spectral
density [32, 62]

Jeff(ω) = g2
∑

k′

c̄2
k′δ(ω − ω̄k′) =

2αω�4

(�2 − ω2)2 + (γω)2
(28)

with the effective dissipation strength

α =
4

π

g2

�3
γ. (29)

For the time-dependent Josephson energy EJ(t) = h̄vt , this model defines a dissipative Landau–
Zener problem for which at T = 0 the spin-flip probability reads [21, 22]

P↑→↓ = 1 − e−2πg2 ∑
k′ c̄2

k′/v. (30)

Note that this formula is exact for any values of the coefficients g and c̄k′ , provided that the
systems starts at t = −∞ in its ground state. The sum

∑
k′ c̄2

k′ can be expressed in terms of
the spectral density (28), such that it becomes∑

k′

c̄2
k′ =

1

g2

∫
dω Jeff(ω) =

1

π

[
arctan

(
2�2

− γ 2

γ
√

4�2 − γ 2

)
+

π

2

]
. (31)

In the limit γ → 0, we obtain
∑

k′ c̄2
k′ = 1, such that the transition probability (30) equals

expression (2) which is valid in the absence of the oscillator–bath coupling. For a small but
finite dissipation strength γ ,

∑
k′ c̄2

k′ < 1 and, thus, the spin-flip probability becomes smaller
when the oscillator is damped.

We now use this exact result as a test for the master equation (10). It is worth emphasizing
that both problems are not fully equivalent, because the preparations are different: at zero tem-
perature, the initial condition (20) for the master equation reads ρ(t = −∞) = |↑, 0〉〈↑, 0|, i.e.
the composed qubit–oscillator–bath system starts in the pure state |↑, 0〉 ⊗ |0, 0, . . .〉, where
the latter factor refers to the bath. In the analytical treatment sketched in the preceding
paragraph, by contrast, the initial condition is the ground state of the total Hamiltonian (27),
|↑〉⊗ |0̄, 0̄, 0̄, . . .〉. Since a finite oscillator–bath coupling induces system–bath correla-
tions [45], the oscillator is generally entangled with the bath. Nevertheless, in the present con-
text, the difference should be minor, because we consider a time evolution that starts at t = −∞,
such that the oscillator–bath setting can evolve into its ground state before Landau–Zener
tunnelling occurs.

In figure 4, we compare the transition probabilities obtained with the quantum master
equation (10) with the corresponding exact analytical result (30). For the system parameters
used below, we find that the Bloch–Redfield theory predicts the exact results even at zero
temperature with an error of less than 1%. Since the quality of a Markovian quantum master
equation generally improves with increasing temperature, the results presented below are rather
reliable.

4.2. Thermal excitations and dissipative transitions

We next turn to the generic situation in which both thermal excitations of the initial state
and dissipative transitions play a role, i.e. we consider the situation of finite temperatures and
finite dissipation strength. The resulting spin-flip probabilities P↑→↓ for three different sweep
velocities are shown in figure 5. For small temperatures, kBT . 0.2h̄�, we find that dissipation
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1.0

P ↑
→

↓�
P ↑

→
↓(

γ
=

0)

0 0.05 0.1 0.15
γ [Ω]

v= 0.004 Ω2

v= 0.01 Ω2

v= 0.04 Ω2

Figure 4. Comparison of the spin-flip probability P↑→↓ at T = 0 obtained with
Bloch–Redfield theory (symbols) and the exact result, equations (30) and (31),
as a function of the dissipation strength for qubit–oscillator coupling strength
g = 0.04 � and various sweep velocities. The probability has been normalized
to the corresponding value in the absence of dissipation, P↑→↓(γ = 0). The
deviation from the exact result is always below 1%.

slightly reduces the spin-flip probability P↑→↓. This is consistent with the behaviour at zero
temperature, discussed in section 4.1. Once the thermal energy is of the order h̄�, the opposite
is true: dissipation supports transitions to the final ground state |↓〉 and, thus, P↑→↓ increases.
This tendency is most pronounced for the intermediate sweep velocity chosen in figure 5(b).
In this regime, we again find a non-monotonic temperature dependence of the transition
probabilities.

In order to reveal the role of dissipative decays, we focus on the population dynamics
for an intermediate temperature kBT ≈ 0.5h̄�, where the transition probabilities are already
significantly influenced by thermal excitations; cf figure 5. Nevertheless, the temperature is still
sufficiently low, such that only the oscillator states |0〉 and |1〉 are relevant. Figure 6 shows
the time evolution of the population of the states |↑, 0〉 and |↑, 1〉. Obviously, the populations
change considerably at the avoided crossings of the qubit–oscillator spectrum, so that the
dynamics discerns into three stages.

For t < −�/v, the system remains in the canonical state. When at time t = −�/v the
anti-crossing between the states |↑, 1〉 and |↓, 0〉 is reached, the population of the former
state drops due to an adiabatic transition to the latter. As a consequence, the oscillator is no
longer at thermal equilibrium and, consequently, we observe thermal excitations from |↑, 0〉

to |↑, 1〉. When at time t = �/v, the second set of anti-crossings is reached (see figures 2(a)
and (b)), both states undergo an individual Landau–Zener transition after which the populations
converge in an oscillatory manner towards their final value. At the final stage, the oscillator
populations thermalize, while those of the qubit remains practically unchanged. The latter
sounds counter-intuitive because the physical system is dissipative. Nevertheless, this has a
physical explanation: the qubit experiences an effective heat bath with a spectral density
sharply peaked at the oscillator frequency �. Thus for large times, t � �/v, the spectral
density at the qubit splitting h̄vt effectively vanishes and, consequently, the qubit is decoupled
from the bath.

The population dynamics provides evidence that for weak dissipation and narrowly avoided
crossings, the dynamics consists of individual Landau–Zener transitions, while dissipation
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↓(

∞
)
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0.7

0.8

0.9

P ↑
→
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γ
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Ω
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(b)

(c)

Figure 5. Damping effects on the asymptotic transition probability P↑→↓ as a
function of the temperature for qubit–oscillator coupling g = 0.04 �, various
sweep velocities v and damping strengths γ . The symbols depict numerical
results obtained with the quantum master equation (17), whereas the solid lines
mark the results from the independent-crossing approximation (25) for γ = 0.

takes place mainly in-between the transitions. This behaviour resembles the one occurring in
nanomagnets [63, 64].

5. Conclusions

We have investigated the influence of finite temperature, decoherence and dissipation on
Landau–Zener transitions of a two-level system (qubit) that is coupled via a harmonic oscillator
to a heat bath. In particular, we have focussed on a recent solid-state realization of this
model, namely the so-called circuit QED for which Landau–Zener sweeps can be performed
by switching the effective Josephson energy of the Cooper-pair box. The adiabatic spectrum
of this system consists of a sequence of exact and avoided crossings, where for strong qubit–
oscillator coupling, the latter may even overlap. Therefore, the resulting quantum dynamics is
more complex than in the ‘standard’ two-level Landau–Zener problem. Moreover, this qubit–
oscillator–bath model is equivalent to coupling the qubit to a bath with peaked spectral density.
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0
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,1

− −4 2 0 2 4

vt [Ω]

0
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0.75
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P ↑
,0
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Figure 6. Population dynamics of the states |↑, 0〉 (a) and |↑, 1〉 (b) during
the Landau–Zener sweep. Dissipation strength and temperature are γ = 10−2 �

and kBT = 0.5 h̄�, respectively. The grey lines are the corresponding results in
the zero-friction limit γ = 0, for which the probabilities converge to the values
indicated by the dashed lines. The arrows mark the positions of the avoided
crossings in the qubit–oscillator spectrum; cf figure 1.

Dissipation has been modelled by coupling the oscillator to an Ohmic environment which
we integrated out within a Bloch–Redfield approach. We solved the resulting master equation
numerically after a transformation to Wigner representation followed by a decomposition into
proper basis functions. The comparison with results for the exactly solvable zero-temperature
limit, demonstrated that our approach provides reliable results, even though this limit is known
to be rather challenging for a Markovian master equation.

For vanishing dissipation strength, the temperature enters only via initial thermal
excitations of the oscillator. Most interestingly, we found for this case that the spin-flip
probability exhibits a non-monotonic temperature dependence. For a sufficiently small qubit–
oscillator coupling, this can be understood within the approximation of individual Landau–
Zener crossings. This picture reveals the special role played by the first-excited oscillator state.
As compared to any other state, this state is more likely to induce a spin-flip. At intermediate
temperatures, the first excited oscillator state possesses a relatively high influence, which leads
to the observed non-monotonic behaviour. When dissipative decays become relevant as well,
transitions to the final (adiabatic) ground state of the qubit become more likely. Nevertheless,
in some small regions of parameter space, we find the opposite, namely that the probability of
finding the qubit in the excited state is slightly enhanced. This is at first sight counter-intuitive,
but can be understood from the fact that the qubit effectively experiences a bath with a peaked
spectral density. Therefore, dissipative qubit transitions can occur only during the short lapses of
time in which the adiabatic energy splitting of the qubit is of the order of the oscillator frequency.
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With an increasing oscillator–bath coupling, the peak in the spectral density becomes broader
and, thus, the more intuitive tendency towards the final ground state starts to dominate.

Finally, our results provide evidence that the recently derived zero-temperature results hold
true also for finite temperatures, provided that the thermal energy does not exceed a value of
roughly 20% of the oscillator’s energy quantum. This means that experimental quantum-state
preparation schemes that rely on Landau–Zener transitions in the zero-temperature limit, are
feasible already when the oscillator is initially in its ground state, whereas the low-frequency
modes of the bath may nevertheless be thermally excited.
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Appendix A. Derivation of the quantum master equation

In this appendix, we outline the derivation of the master equation (10) starting from the general
Bloch–Redfield expression (5).

A.1. Heisenberg coupling operator

The essential step is the solution of the Heisenberg equation of motion for the scaled position
operator Q = a + a† of the oscillator, which will rely on approximations. In doing so, we even
address a slightly more general qubit Hamiltonian outside the charge degeneracy point, i.e. we
also consider the charging energy 1

2 Eelσx , such that the Rabi Hamiltonian (1) becomes

Hs = −
EJ

2
σz −

Eel

2
σx + h̄�a†a + h̄gσx(a

† + a). (A.1)

For convenience, we write this Hamiltonian in the eigenbasis of the qubit:

Hs = −
h̄1

2
σ̄ z − h̄�a†a + h̄g(cos θσ̄ z − sin θσ̄ x)(a

† + a), (A.2)

where

h̄1 =

√
EJ

2 + E2
el, θ = arctan

EJ

Eel
(A.3)

denote the energy splitting and the coupling angle, respectively, of the qubit. The corresponding
Heisenberg equations become

Q̈ = −�2 Q − g�(cos θσ̄ z − sin θσ̄ x), (A.4)

˙̄σ z = −2g sin θσ̄ y Q, (A.5)

˙̄σ x = (1 − 2g cos θ)σ̄ y, (A.6)

˙̄σ y = −(1 − 2g cos θ)σ̄ x + 2g sin θσ̄ zx, (A.7)
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which are nonlinear due to the qubit–oscillator coupling and, thus, cannot be solved directly.
We are only interested in the time evolution of the coordinate Q of the oscillator with
eigenfrequency �. Since in typical circuit QED experiments g � �, we treat the coupling as a
perturbation. In the absence of the coupling, the time evolution of the qubit operators reads

σ̄ x(t) = σ̄ x cos(1t) + σ̄ y sin(1t), (A.8)

σ̄ z(t) = σ̄ z. (A.9)

Inserting this into the equation of motion (A.4) for the oscillator coordinate, it becomes evident
that the qubit entails on the oscillator the time-dependent force

F(t) = −g�
{
σ̄ z cos θ −

[
σ̄ x cos(1t) + σ̄ y sin(1t)

]
sin θ

}
. (A.10)

To first order in g, the solution of equation (A.4) reads

Q(t) = aei�t + a†e−i�t +
∫ t

0
dt ′ G(t − t ′)F(t ′), (A.11)

where with H(t) the Heaviside step function

G(t) =
sin(�t)

�
H(t) (A.12)

denotes the retarded Green function of the classical dissipative harmonic oscillator. Evaluating
the integral, we finally obtain the Heisenberg operator

Q(t) = aei�t + a†e−i�t
− gIc(0, �; t)σz cos θ + g

[
Ic(�, 1; t)σx + Is(�, 1; t)σy

]
sin θ (A.13)

with the functions

Ic(a, b; t) =
a cos(at) − a cos(bt)

a2 − b2
, (A.14)

Is(a, b; t) =
b sin(at) − a sin(bt)

a2 − b2
. (A.15)

Expression (A.13) allows one to explicitly evaluate the Bloch–Redfield equation (5).

A.2. Ohmic spectral density

In circuit QED, the environment of the qubit and the transmission line is formed by electric
circuits and, thus, can be characterized by an effective impedance. In most cases, this impedance
is dominated by an Ohmic resistor, which corresponds to the Ohmic spectral density (9)
of the bath. Then the time integration in the Bloch–Redfield equation (5) can be evaluated.
The antisymmetric correlation function (7) is then given by

A (τ ) =
γ

2π�

∫
∞

0
dτ ω sin(ωτ) = −

γ

2�

d

dτ
δ(τ ), (A.16)

such that the last term of equation (5) becomes (iγ /4�)Q̇ . The remaining time integrals are of
the type ∫

∞

0
dτ S (τ ) cos(�τ) =

�

2
coth

( h̄�

2kBT

)
, (A.17)∫

∞

0
dτ S (τ ) sin(�τ) =

ν1�ω2
c

ω2
c + �2

∞∑
n=−∞

�2
− νnωc

(νn + ωc)(ν2
n + �2)

, (A.18)

where we introduced the Matsubara frequencies νn = 2πnkBT/h̄. In the second integral, an
ultraviolet divergence has been regularized by a Drude cutoff e−ω/ωc [44].

New Journal of Physics 10 (2008) 115012 (http://www.njp.org/)

http://www.njp.org/


17

Appendix B. Basis expansion

In this appendix, we outline the diagonalization of the oscillator Liouvillian in Wigner
representation, Lho, whose eigenvectors are used as a basis set for the numerical treatment.
Since the operator Lho, apart from the cross-diffusion Dxp, is of the same form as the Fokker–
Planck operator of the corresponding problem for classical Brownian motion, we can make use
of an idea put forward by Titulaer [57, 60] and generalize it along the lines of [50].

B.1. Diagonalization of the oscillator Liouvillian

By solving the characteristic functions of the partial differential equation φ̇ = Lhoφ, one finds
the operators

r+ = ∂x +
λ

�
∂p , (B.1)

r− =
�2

λ2 − �2

(
〈Q2

〉eq∂x −
λ

�
Dpp∂p + x −

λ

�
p
)
, (B.2)

which commute with ∂/∂t − Lho and, thus, map any solution of the Liouville equation to a
further solution. For notational convenience, we have introduced the eigenvalues of the classical
equation of motion of the dissipative harmonic oscillator,

λ = −
γ

2
+ i

√
�2 −

γ 2

4
, (B.3)

and λ∗. It will turn out that the equilibrium expectation value of the dimensionless oscillator
coordinate Q becomes 〈Q2

〉eq = Dpp + γ Dxp/�. Since moreover, the diffusion coefficient Dxp

appears in all results only in this combination, the introduction of 〈Q2
〉eq turns out to be

convenient as well; see also the discussion after equation (13). The operators (B.1) and (B.2)
fulfil the commutation relations

[r−, r+] = 1, [r−, r∗

+] = [r∗

−
, r+] = 0,

[
Lho, r±

]
= ±λr± (B.4)

and allow one to write the Liouvillian in the diagonal form

Lho = λr+r− + λ∗r∗

+r∗

−
, (B.5)

where the symbol ∗ denotes complex conjugation2. Formally, we have reduced the eigenvalue
problem for the Liouvillian to that of two uncoupled harmonic oscillators, so that the eigenvalues
obviously read

λnn′ = λn + λ∗n′
= −(n + n′)

γ

2
+ i(n − n′)

√
�2 −

γ 2

4
, (B.6)

where n, n′
= 0, 1, 2, . . . . The corresponding eigenfunctions φnn′ can be constructed by

applying the raising operators r+ and r∗

+ on the ‘ground state’. The latter is the stationary state
defined by the relation Lhoφ00 = 0, whose solution is the Gaussian

φ00(x, p) =
�

2π

√
〈Q2〉eq〈Q̇2〉eq

exp
(

−
�2 p2

2〈Q̇2〉eq
−

x2

2〈Q2〉eq

)
. (B.7)

2 We do not consider the overdamped limit γ > 2� in which λ becomes real and, thus, the notation needs to be
modified.
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Since Lho 6= L †
ho, the eigenfunctions φnn′ are not mutually orthogonal, so that we need to

compute the left eigenvectors φ̄nn′ of Lho as well. Repeating the calculation from above for L †
ho,

we find the left ground state φ̄00 = 1, so that we obtain the eigenfunctions

φnn′ =
1

n!n′!
(r+)

n(r∗

+)n′

φ00, (B.8)

φ̄nn′ = (r̄+)
n(r̄∗

+)
n′

1, (B.9)

which fulfil the ortho-normalization relation∫
dx dp φ̄mm′φnn′ = δnmδn′m′ . (B.10)

B.2. Expansion of the entire Liouvillian

Besides the already diagonalized oscillator Liouvillian, the total Liouvillian (17) for the qubit
plus the oscillator contains also the operators

x = −r− − r∗

−
+ κr+ + κ∗r∗

+, κ = 〈Q2
〉eq

�2

λ2 − �2
, (B.11)

∂p = −i
r+ − r∗

+

2
√

1 − γ 2/4�2
. (B.12)

Then, the basis decomposition of the Wigner function,

W =

∑
nn′

Cn,n′φnn′ , Cn,n′ =

(
c↑↑

n,n′ c↑↓

n,n′

c↓↑

n,n′ c↓↓

n,n′

)
, (B.13)

obeys the equation of motion

Ċn,n′ = (nλ + n′λ∗)Cn,n′ + i
EJ

2h̄
[σz, Cn,n′] − ig[σx , Cn+1,n′ + Cn,n′+1]

+ i
g√

1 − γ 2/4�2
[σx , n′Cn,n′−1 − nCn−1,n′]

+ i
g√

1 − γ 2/4�2
[σx , κnCn−1,n′ − κ∗n′Cn,n′−1]

− i
γ Fσ√

1 − γ 2/4�2
[σx , n′Cn,n′−1 − nCn−1,n′], (B.14)

which is a set of 4N 2-coupled linear ordinary differential equations.

B.3. Computation of expectation values

The expectation value of an operator can be performed directly in the basis of the eigenfunctions
without back transformation to the operator representation of the density operator. For an
observable

B = S ⊗ O(x, p), (B.15)
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for which S and O refer to qubit and oscillator variables, respectively, the expectation value

〈B〉 = tr (Bρ) =

∑
i j

Si j

∫
dx dp O(x, p)

∑
nn′

ci j
n,n′φnn′(x, p) (B.16)

can be expressed in terms of the operators (B.1) and (B.2) such that

〈B〉 =

∑
i j

∑
nn′

Si j Onn′ci j
n,n′(t) , (B.17)

where O(x, p) is the corresponding operator in phase-space [56] and

Onn′ =

∫
dxdp O(x, p)φnn′(x, p). (B.18)

If one is only interested in the behaviour of the qubit, i.e. for O = 1, the expectation value
becomes

〈B〉 = 〈S〉 =

∑
i j

Si j ci j
00(t). (B.19)

This implies that any information about the qubit state is already contained in the four
coefficients ci j

00(t), which represents a particular advantage in the present decomposition.
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